Faculty of Engineering – Shoubra Department: **Electrical Eng.**

Semester: Fall 2012

Total Grade: 20

Mid Term Exam

Course: ECOM 111:

Electronic Engineering Fundamentals

Instructor: Dr. Abdallah Hammad

Number of questions: 4 - Time allowed: 90 Min

Answer all questions: write each question number and part number ahead of your answer

K=1.38×10⁻²³ J/K h=6.64×10⁻³⁴ J.s q=1.6×10⁻¹⁹ C m_0 =9.1×10⁻³¹ Kg For Si → m_e =1.18 m_0 m_h =0.81 m_0 E_g=1.12 eV

- (1) In a semiconductor, the Fermi level is 250 meV below the conduction band. What is the probability of finding an electron in a state **kT** above the conduction band edge E_C at room temperature?
- (2) The concentration of atoms in silicon is 5×10^{22} cm⁻³. If we add phosphorous such that the donor impurity is 1 part in 10^6 silicon Atoms.
 - a. Find the change in resistivity.
 - b. Find the concentration of Al that should be added, so that the final silicon crystal becomes intrinsic.

(3)

- a. Find the value of the voltage source applied that causes the tilt shown in the energy band diagram shown in Fig.1
- b. Find the electric field and the carrier concentration given that at T=300 K $n_i=1.5\times 10^{10}\,\text{cm}^{\text{-}3}$
- (4) An N-type silicon bar at 300 K is shown in Fig. 2. The donor's density is 5×10^{16} cm⁻³. It is terminated by metal contacts at both ends. The electron's mobility is 1600 m²/V.s while the hole mobility is 600 cm²/V.s. The sample is excited with uniform constant illumination creating the excess minority carrier density distribution shown in Fig. 2. Calculate and sketch the minority carrier current density.

